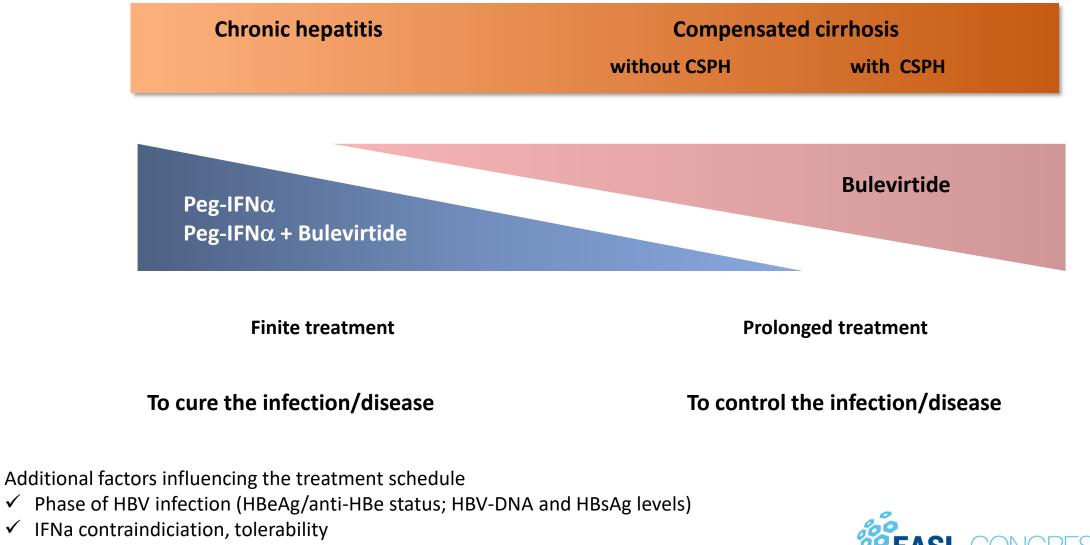


Diagnosis, Staging, HCC risk and antiviral therapy

Peg-IFN+NUC: predictors of response


Maurizia Rossana Brunetto

Clinical and Experimental Medicine -University of Pisa Hepatology Unit – University Hospital of Pisa. MR Brunetto

Disclosures

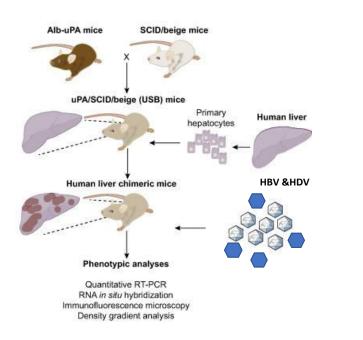
Speakers Bureau: AbbVie, Gilead Advisory: AbbVie, Gilead, Janssen, Roche, EISAI-MSD

Treatment of Chronic Hepatitis Delta

 ✓ Patient's will and compliance to treatment easlcongress.eu #EASLCongress

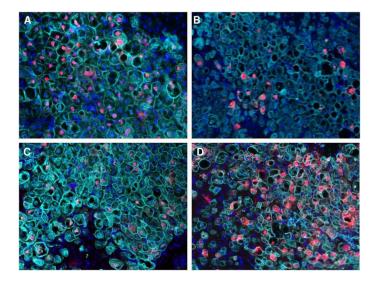
Which patients with CHD can be treated with PegIFNa?

Statement


• IFNa has been used since the '90s for the treatment of CHD. Mono- and multicentre studies have been conducted with IFNa, with only two randomised phase II studies published. Nevertheless, long-term data on clinical benefit and safety are available (LoE 2, strong consensus).

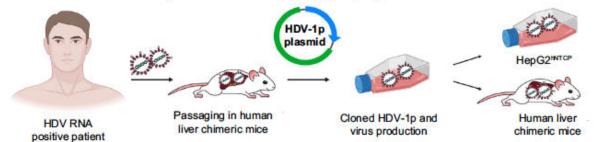
Recommendations

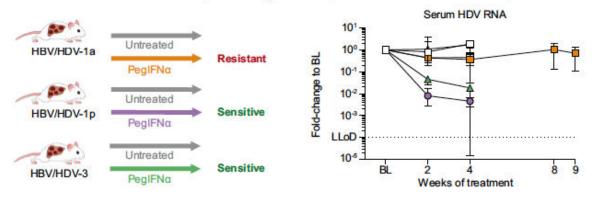
- All patients with CHD and compensated liver disease, irrespective of whether they have cirrhosis or not, should be considered for treatment with PegIFNa (LoE 2, strong recommendation, consensus).
- PegIFNa for 48 weeks should be the preferred treatment schedule (LoE 3, strong recommendation, consensus).
- Personalised treatment durations may be considered based on HDV RNA and HBsAg kinetics and treatment tolerability (LoE 3, weak recommendation, strong consensus).


Both interferon alpha and lambda can reduce all intrahepatic HDV infection markers in HBV/HDV infected humanized mice

The effect of **peg-IFN** α and **peg-IFN** λ , compared to a HBV-polymerase inhibitor (NA) on all HDV infection markers was studied using **human liver chimeric mice**

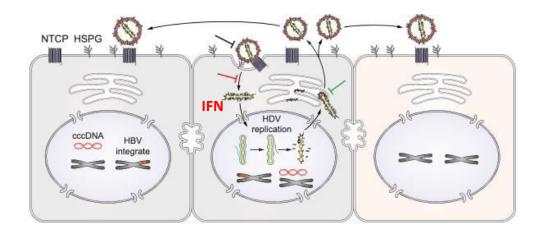
- Peg-IFNα and peg-IFNλ reduced HDV viremia (1.4 log and 1.2 log, respectively) and serum HBsAg levels (0.9-log and 0.4-log, respectively). Intrahepatic quantification of genomic and antigenomic HDV RNAs revealed a median ratio of 22:1 in untreated mice, resembling levels determined in HBV/HDV infected patients.
- Both IFNs greatly reduced intrahepatic levels of genomic and antigenomic HDV RNA, increasing the amounts of HDAg- and antigenomic RNA-negative hepatocytes.


- NA-mediated suppression of HBV replication (2.1-log) did not significantly affect HBsAg levels, HDV productivity and/or release.
- In humanized mice lacking adaptive immunity, IFNs but not NA suppressed HDV.
- Viremia decrease reflected the intrahepatic reduction of all HDV markers, including the antigenomic template, suggesting that intracellular HDV clearance is achievable.

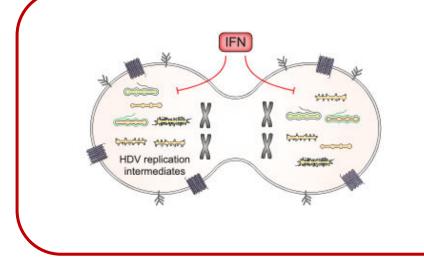

Strain-specific responsiveness of HDV to interferon-alpha treatment

The responsiveness to Peg-IFNa of 3 different cloned HDV strains was studied in chronically infected mice

Generation of a new infectious HDV genotype 1 clone (1p) from a chronic HBV/HDV infected patient later responding to pegIFNα treatment

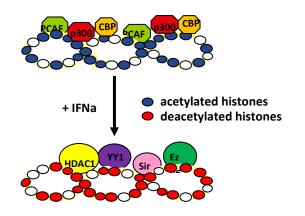


The new HDV-1p strain and HDV-3 appear pegIFNα sensitive while the commonly used HDV-1a strain is resistant, revealing strain specific factors to IFNα responsivness



- Peg-IFNa reduced viremia of ≈ 2 log and intrahepatic HDV markers in mice infected with HBV/HDV-1p and HBV/HDV-3, but not with HBV/HDV-1a
- Primary Human Hepatocytes (PHHs) infected with HBV/HDV-1p and HBV/HDV-1a received Peg-IFNa → intracellular HDV-RNA decline of 1.6 log after 14 days only in HBV/HDV-1p infected PHHs
- Human ISGs, pattern recognition receptors (hMDA5) and chemokines were similarly and strongly upregulated upon HDV infection with all the 3 strains
- Peg-IFN further enhanced ISGs (2-29x)
- Genome sequencing showed high identity for the ribozyme site and variability in the large HDAg, but not in known post-translational modification sites
- HDV-1a (obtained from an untreated pt and serially passed in chimps and woodchuck and then cloned) shows intrinsic resistance to Peg-IFN
- Virus specific determinants may influence the response to IFNa

HDV entry, replication and persistence, the importance of cell-to-cell transmission and the role of IFN



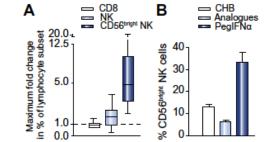
- HDV depends on HBsAg for spreading via NTCP but can also maintain its genome in the liver through cell division
- IFN affects numerous steps of HDV life cycle after the canonical NTCP mediated infection, including entry, replication and secretion

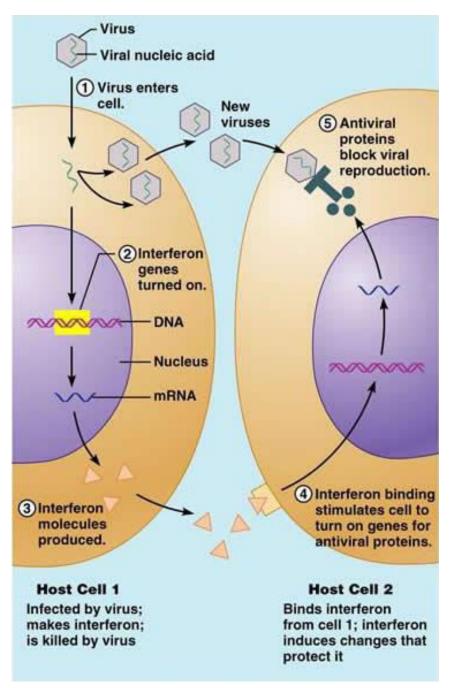
- Both exogenously and endogenously induced IFNs (alpha and lambda) responses restrict HDV persistence during hepatocyte proliferation.
- The severe loss of HDV replicative intermediates during cell division may be explained by exposure of viral RNA to induced ISGs, that may either cause direct degradation of HDV-RNA or inhibit the restablishment of replication in the nuclei of daughter cells

Interferon antiviral activities in CHB

IFNa treatment is accompanied by a decrease in the acetylation of cccDNA bound H4 histones in vitro

Generic antiviral activity


IFN activates multiple genes of the host (ISGs), many of which have antiviral activities, interfering viral life cycle.

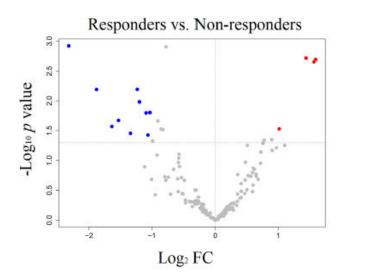

Specific antiviral activity

- IFN-α inhibits HBV transcription and replication by targeting the epigenetic regulation of the nuclear cccDNA minichromosome
- cccDNA degradation induced by IFN-α and lymphotoxin-β-receptor activation through up-regulation of APOBEC3A and 3B cytidine-deamin

Immunomodulatory Activities

- \blacktriangleright IFN- α mediates **divergent effects** on the **innate** and **adaptive** arms of the immune system in vivo.
- The efficacy of PegIFNα may be limited by its depleting effect on CD8 T cells; conversely, it can cumulatively drive proliferation, activation and antiviral potential of CD56(bright) NK cells.
 - The percentage of CD8 T cells remained stable, whilst NK cells showed a trend to increase.
 - Such boosting of CD56 ^{bright} NK cells was likely to be an immune modulatory effect rather than an indirect effect of viral load reduction

The response to IFN implies the activation of multiple genes of the host (ISGs)


Single nucleotide polymorphisms (SNPs) near the interleukin 28B (*IL-28B*) gene - rs12979860, rs8099917 - are strongly associated with SVR to Peg-IFN +/- RBV in CHC

- 4 studies investigated their role in response to Peg-IFN in CHD: overall 149 CHD patients were stuided with conflicting results
- In 3 studies (112 patients) the response to treatment was not influenced by IL28B polymorphysms, by converse in the remaining study (37 patients) a bordeline association was observed

At present there is no evidence of a role of IL28B polymorphysms in response to Peg-IFN in CHD

Yilmaz b et al Acta Gastroent Belg 2016, Visco-Comandini U et al DLD 2014, Ispiroglu M et al J Infec Dev C 2017; Heller T et al, AP&T 2014

MiRNome Profiling of Circulating Extracellular Vesicles in Patients With CHD undergoing Peg-IFN treatment

- 20 HDV patients Peg-IFN treated: 8 were Responders (HDV-RNA undetectable 6 months after EOT)
- In Responders, at BL 10 miRNA were downregulated and 4 upregulated as compared to Non responders
- After 6 months of Peg-IFN 7 miRNA were de-regulated, with distintc expression profiles according to the response
- The differential expression of miRNA 155-5p appears to differentiate both at BL and after 6 months of therapy Responders vs Non responders
- BL miR-155-5p expression was inversely correlated with HBsAg (rs = −0.49, 95% CI −0.77 to −0.06; p = 0.028), showing a trend with HDV RNA (rs = −0.39, 95% CI −0.71 to 0.07; p = 0.092).
- At 6 months of therapy, miR-155-5p showed a strong inverse correlation with both HBsAg (rs = -0.71, 95% CI -0.88 to -0.39; p < 0.001) and HDV RNA (rs = -0.53, 95% CI -0.79 to -0.12; p = 0.016).
- At logistic regression analysis, both miR-155-5p (at baseline: OR = 4.52, 95% Cl 1.25–16.38; p = 0.022; at 6 months: OR = 5.30, 95% Cl 1.19–23.65; p = 0.029) and HDV RNA (at baseline: OR = 0.19, 95% Cl 0.05–0.79; p = 0.022; at 6 months: OR = 0.38, 95% Cl0.17–0.84; p = 0.018) resulted significantly associated to virologic response.

The assesment of EV miR-155-5p may represent an additional valuable tool for the management of HDV patients undergoing Peg-IFNα treatment

To add complexity to the complexity

- ✓ Not all the studies were randomized
- ✓ Not all the patients were treated with NUCs
- ✓ The number of patients was usually small
- ✓ The assays used to quantify HDV-RNA showed different sensitivity and dynamic range
- ✓ The definition of response was not always the same:
 - Cure of both HBV and HDV infection (achievement and persistence of undetectable HBsAg and HDV-RNA)
 - Cure of HDV infection (undetectable HDV-RNA 6 months after EOT)

Virologic response to Peg-IFN +/- NUCs

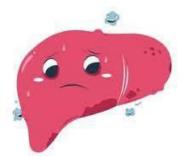
Parameter	Rate of occurrence with IFN treatment	Clinical benefit (improved survival)
HBsAg loss	2.5% (0-25%)*	Yes [§]
 Undetectable HDV-RNA 24 wPT for 2 years after EOT ≈ 8.9 years PT 	29% (24-34%)* 50%** 36.6%***	Yes ^{§,**,&}
2 log HDV-RNA decline at EOT, maintained thereafter	n.a.**** 10/14 pts with normal ALT at EOT, maintained in 7/12 (58.3%) after 12 years	Yes***

*Abdrakhman A et al Ant. Research 2021: Meta-Analysis on 13 and 8 studies using Peg-IFN ;

** Yurdaydin C et al J infct Diseases: 99 pts treated for at least 6 months, cumulative median duration 24 (6-126) months, median 2 courses;

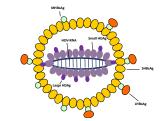
***Wranke A et al JVH 2020: HIDIT I long term follow-up;

**** Farci P et al Gastroenterology 2004: long term follow-up of 36 pts treated with standard IFN;

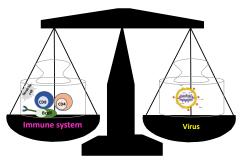

§ Heidrich B et al Hepatology 2014 and Wranke A et al Hepatology 2017;

&Keskin O et al Clinical Gastroenterology and Hepatology 2015

Baseline predictors of response or non response



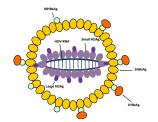
Genetic profile: IL28B SNPs miRNAs: miR-155-5p


Stage of liver disease: *cirrhosis, portal hypertension*

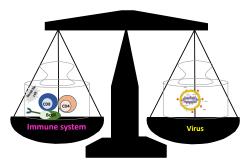
Viral constitutive features: genotype 5 *infection was associated with higher response rates than GT 1*

Roulot D et al, J Hep 2020; Spaan M et al J Hep 2020

Virus/host interaction: lower HDV-RNA, HBsAg and HBcrAg levels were associated with higher response rates

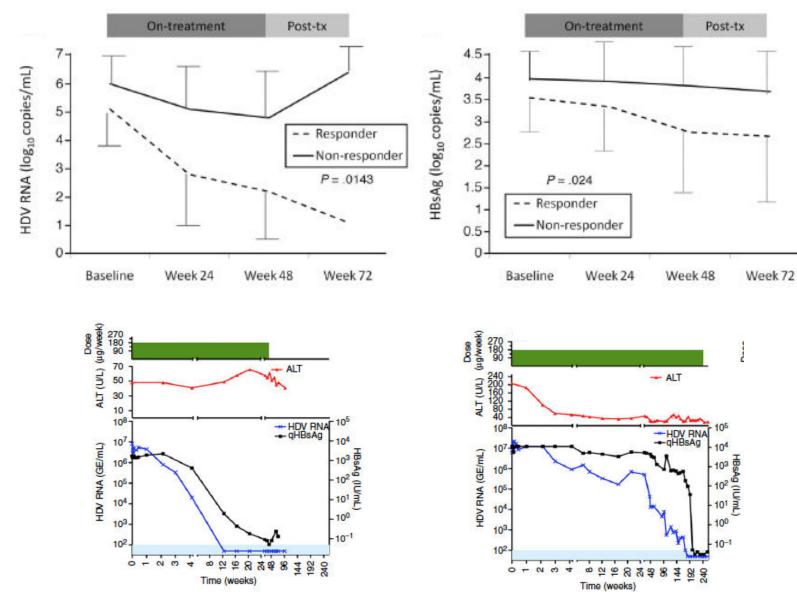

Niro G et al, AP&T 2016, Spaan M et al, J Hep 2020, Yurdaidin C et al, J Infect Dis 2018; Wedemeyer H Lancet Infect Dis 2019; Sandmann L et al Hepatol comm 2022

Baseline predictors of response or non response



Genetic profile: *IL28B SNPs* miRNAs: *miR-155-5p*

Viral constitutive features: genotype 5


Stage of liver disease:

- ✓ most of the studies indicate that Peg-IFN is equally effective in patients with or without cirrhosis
- ✓ However, among patients with cirrhosis the chances of response could be lower in those with low PLTS (proxy for portal hypertension)

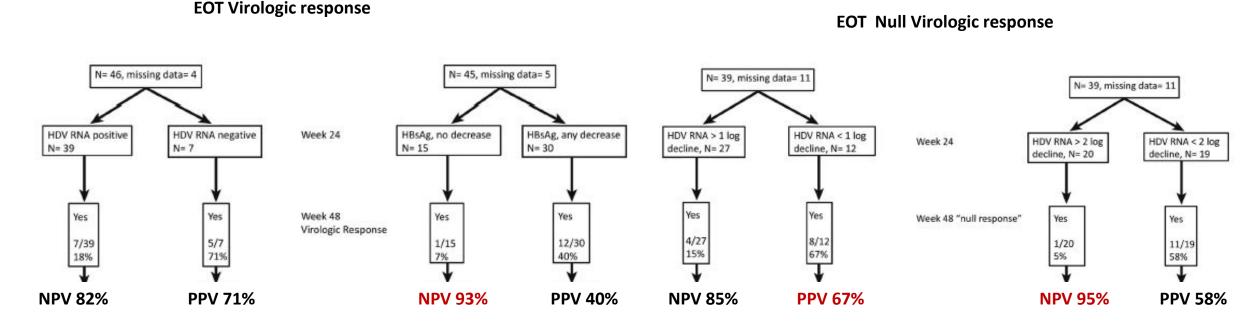
Virus/host interaction: *HDV-RNA, HBsAg and HBcrAg levels*

Farci P et al Gastro 2004; Wedemeyer H et al Lancet Infect Dis 2019; Kabacam G et al Turk J Gast 2012; Yurdaydin C et al J Infect Dise 2018; Gunsar Antiviral Therapy 2005

On treatment predictors: HDV-RNA kinetics during and after Peg-IFN treatment

- 50 CHD patients treated with Peg-IFNa +/-ADV for 48 weeks HIDIT-I
- Significant differences between Responders and Non Responders were observed in the overall kinetics for both the viral markers throughout the observation period

However

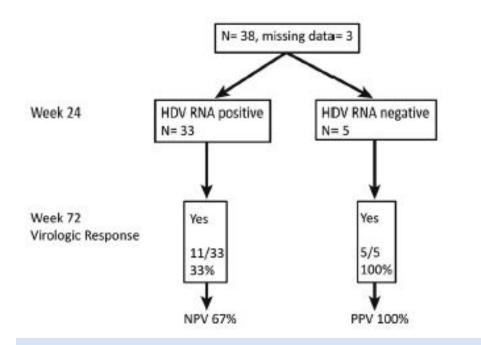

- Among Responders at individual level the HDV-RNA and HBsAg kinetics may vary significantly
- a subset of patients may show a later HDV-RNA decline: after the first 24 weeks and the clearance of HDV-RNA had been reported after EOT in about 20% of 24 w posttreatment Responders

Keskin O et al Clinical Gastroenterology and Hepatology, 2015; Heller t et al, AP&T 2014; Niro G et al Hepatology 2006; Niro G et al AP&T 2016

Association Between Level of Hepatitis D Virus RNA at Week 24 of Peg-IFN Therapy and Outcome

- 50 CHD patients from HIDIT-1 trial were studied
- For 41 pts data 24-week post treatment were available
- Null response defined as < 1 log HDV-RNA decrease at EOT
- However 2 of 11 (18%) NR achieved the virological response at 24 weeks after EOT, both had BL viremia levels \leq 4 log

End of treatment response (undetectable HDV-RNA)

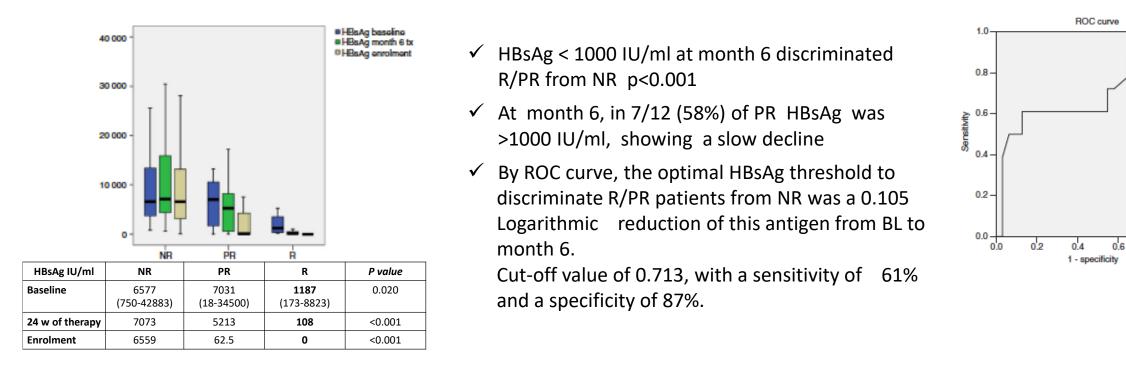

- In 58% of EOT responders HDV-RNA became undetectable after 24weeks of treatment
- The lack of any HBsAg decline at week 24 was observed only in 1 EOT responder
- Only 8% of Null Responders at EOT had > 2log HDV-RNA decline at week 24

Association Between Level of Hepatitis D Virus RNA at Week 24 of Peg-IFN Therapy and Outcome

Keskin O et al Clin Gastro and Hep 2015

- 50 CHD patients from HIDIT-1 trial were studied
- For 41 pts data 24-week post treatment were available
- Null response defined as < 1 log HDV-RNA decrease at EOT
- However 2 of 11 (18%) NR achieved the virological response at 24 weeks after EOT, both had BL viremia levels \leq 4 log

Post treatment week 24 response

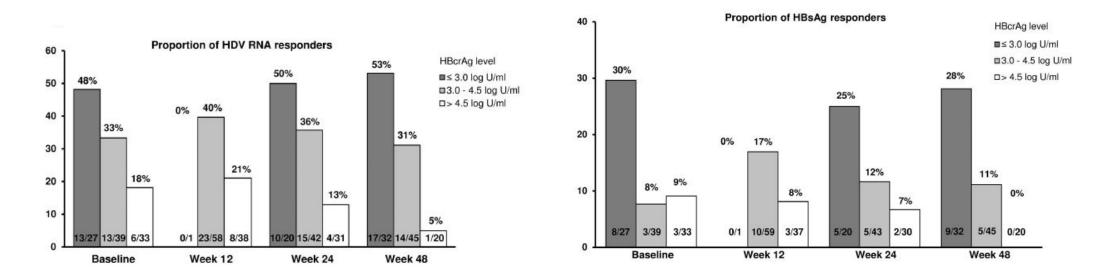

- All the patients with undetectable HDV-RNA at week 24 of treatment achieved virological response 24 weeks after the EOT (VR)
- However they were only 5 of the 16 (31%) VR
- Overall pts with VR showed a more significant decrease of HBsAg serum levels compared to non responders:

Week 24 (39 pts) log $_{10}$ IU/ml $$ 3.32 \pm 0.91 $$	VS	3.93 ± 0.66	p=0.02
Week 48 (37 pts) log $_{\rm 10}$ IU/ml 3.07 \pm 1.27	VS	3.80 ± 0.75	p=0.04

- > The major limitation of the study is the small number of cases, with data missing at the different time points
- > The definition of Null Response is questionable and consistent only for patients with high BL viremia HDV-RNA > 6 log

HBsAg kinetics in chronic hepatitis D during interferon therapy: on-treatment prediction of response

- 62 patients with CHD, treated with Peg-IFN, were considered: 14 patients cleared the HBsAg and HDV-RNA (responders, R), 12 cleared the HDV-RNA remaining positive for HBsAg (partial responders, PR) and 36 cleared neither the HBsAg nor the HDV-RNA (non responders, NR).
- The mean time from the EOT and the enrollment was 5 +/- 2.9 years



Quantitative HBsAg may contribute to predict the long-term response to Peg-IFN therapy

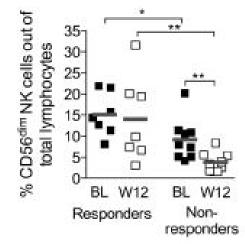
0.8

HBcrAg levels are associated with virological response to treatment with IFN in patients with CHD

- 99 or 120 patients enrolled in HIDIT-II trial (peg-IFN + TDF or placebofor 96 w) had results available at w24 post EOT
- 45 pts had undetctable HDV-RNA at EOT, 32 at 24 w post EOT (35.6% relapsed)
- 3 pts with detectable HDV-RNA at w 96 cleared viremia within w24 post EOT

- HBcrAg serum levels were significantly lower at BL, w24 and 48 in pts with undetectbale HDV-RNA 24 w PT
- 4.72 and 4.5 log U/ml at BL and w24 were the optimal cut off to distinguish 24 w PT responders from non
 responders

> The kinetics of HDV-RNA in Responders to Peg-IFN are highly variable and about 20% of them show a slow or late decline


- Undetectable HDV-RNA at w. 24 of treatment had 100% PPV of virologic response 24 w. PT, however it was achieved in 31% of VR only (analysis in 41 pts of HIDIT-1 trial)
- Less than 1 log HDV-RNA decline at w. 24 of treatment had 67% PPV in the identification of Null Responders (analysis in 41 pts of HIDIT-1 trial)
- On therapy significant HBsAg declines were observed in virological responders 24 w. after EOT and HBsAg levels < 1000 IU/ml were shown to discriminate virological responders from non responders</p>
- HBcrAg (a marker of HBV cccDNAtranscriptional activity) level at BL and during treatment showed significant correlation with HDV-RNA undetectability and HBsAg decline < 100 IU/ml 24 w PT</p>
- > At present consistent futility rules for CHD patients treated with Peg-IFN are lacking
- > The combined monitoring of HDV-RNA and HBsAg may guide the treatment at the single patient level

Effects of HDV infection and Peg-IFNa treatment on the NK cell compartment in chronically infected individuals

Lunemann S et al, Gut 2015

- 31 CHD patients were studied
- 16 treated with Peg-IFNa, 7 were responders (HDV-RNA undetectable 6 months after EOT)
- Peripheral blood from treated patients was obtained at baseline and after 12 weeks of treatment
- CHD patients show a higher than normal frequency of peripheral NK cells, without detectable change in differentiation status, but with reduced functional capacity in terms of ability to respond to IFNa.
- IFNα treatment caused a significant change in NK cell differentiation status, with selective loss of terminally differentiated NK cells and a relative enrichment in immature NK cell subsets: an increase in CD56^{bright} NK cells and a decrease in CD56^{dim} NK cells with altered expression of activating receptors.
- Overall, IFNa treatment was associatesd with a marked functional impairement of NK cells and a polarisation of NK cell IFN-signalling from STAT4 towards STAT1 dependency.
- High baseline frequency of CD56^{dim} NK cells was associated with a positive outcome of IFNa treatment
- Retained high numbers of NK cells is beneficial for the host during Peg-IFNa treatment of chronic HDV infection.

